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When &>8,, a unique boundary of the region of the cycle stability remains (Fig. 6, 
curve 5; 6= 3.161) with a break when K,= K,. In the limit when 6%1, we use expansions 
in terms of the parameter W to obtain the expression for the increment 

x* = -(y - K02 + K*) + I(? - i&z)* + 4K,WI"* 

and this implies that the boundary of the region of stability of an oscillatory region has 
the form ‘p= 3K,,a when &a) 6%. When Kc? < 6=/Z , the boundary coincides with the boundary 
of existence of the cycles Y=@+ K,*. 
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ANKLE SUP~RCRITI~AL DISSIPATIVE STRUCTURES OIY CURVE3 SURFACES * 

B.A. MALOMED and I.E. STAROSEL'SKII 

Cellular, low amplitude structures appearing at cylindrical and spherical 
frontsofgaseous combustion and laser evaporation are described. In the 
case of a spherical front all these structures are found to be unstable.. 
When the cylindrical front of gaseous combustion is expanded, we must 
expect the quasi one-dimensional structure homogeneous with respect to 
the ignorable coordinate to be replaced by a parquet-like pattern of 
rectangular cells, and later to reach a non-stationary regime.. On the 

cylindrical front of laser evaporation the quasi one-dimensional structure 
of maximum amplitude is globally stable. 

The best known hydrodynamic example of a kinetic problem connected with 
the formation of dissipative structures i.e. thermodynamically non- 
equilibrium stationary structures appearing as a result of the development 

of aperiodic instability in a spatially homogeneous state, are Benard cells 
/1,2/. New problems of this kind are connected with the instability of 
plane fronts of laser evaporation of condensed material, and of gaseous 
combustion /3-5/. The instability is aperiodic and appears at finite 
values of the wave number of the perturbation representing curvature of a 
plane front. The development of the instability leads to the formation of 
a stationary, periodically curved front /3/_ 

The purpose of this paper is to investigate such structures and their 

stability on cylindrical and spherical surfaces, and this corresponds to 
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the problem of the propagation of a cylindrical or spherical flame through 
a gas, and of the laser evaporation of a spherical sample. Problems 
dealing with dissipative stfuctures on curved surfaces are also of interest 
in biophysics, where a spherical surface models a cell membrane, while 
the cylindrical surface models the axon /6/, 

1. In the weakly supercritical case, i.e. isnaediately after the loss of stability in 
the unperturbed solution, the evolution of the gas flame shape is described by the following 
dimensionless equation /7/: 

%,_t%+2~%+~~%+(V%)2=0, a=V*m (1.1) 

Here 5 (t,z, y) is the coordinate of an individual point of the flame in the local 
associated reference system in which the unperturbed cvlindrical flame is described by the 
trivial solution F; ~0; the gradient V and the Laplacian A act on the x, y coordinates 
directed along the unperturbed flame, R is the radius of curvature of the flame and R, is 
the value of the radius at which the trivial solution begins to lose its stability. The 
dimensionless coordinates &I, y are measured in units of thermal thickness of the flame 1, 
and the time is measured in units of l/U,where U is the normal flame propagation velocity. 
Equation (1.1) was derived from the Navier-Stokes, thermal conduction and diffusion equations 
on the assumption that the combustion activation energy is much higher than the termperature 
at the front, the diffusion coefficient and thermal conductivity are nearly equal, and the 
gas density change at the front is small. 

Evaporation of condensed matter in the laser radiation field is described by the follow- 
ing phenomenological equation /8/ 

Et + % + 2aAE + A”% + 5’ = 0 W) 

Here a is a parameter proportional to the radiation intensity, and the remaining notation 
follows that of (1.1). 

2, In the case of a cylindrical surface we use y as the cyclic coordinate (0 <y<<nR), 
and direct x along the generatrix of the cylinder. Then the wave vector k of a small 
perturbation can have an arbitrary component k,, and its k, component is "quantized", i,e. 

k, = nR-', n = 0, I,2 . . . (24 
When a>l, the trivial solution 5 ~0 loses its stability with respect to the 

perturbations with wave vectors belonging to an" of the following domains: 

e2 (k=* + naRR-a) > 0, k, = nR,-‘, n Q iR,I (2.2) 

E* (k’) E 2 (a - 1) - (k2 - I)% (2.3) 

We see that the condition of weak supercriticality implies that the quantity 3.'~ 2(a - 1) 
and hence Ed, are small. In the case of (1.2) we have various, locally stable solutions 
on the cylindrical surface. The simplest case represents the quasi one-dimensional structure 
/8/ 

E (z) = 7/$$ (k*) cos kx + 0 (9) (2.4) 

where k belongs to the domain (2.2) when n =O. We also have a solution in the form of a 
lattice of rectangular cells 

E = r/a [(2e2 (ku2) - e* (k,*))‘/* cos kx + (2e2 (kxa) - e2 (kva))‘/l cosky] (2.5) 

where the vector (k,, k,) belongs to one of the domains (2.2) when n#O, as well as two 
solutions in the form of triangular cell lattices 

5 = l[/“i;,e (ka) [sin kx + sin + (16~ - x) - sin -$ (1/.!?y*+ x)] 

~=f%~e(k*) [sinky+sin+(fTx-y)-sin$-(l/%+y)] 

and two solutions consisting of hexagonal cells 

%=~~e(V){coskZ:+cos-&(1/~y-:x)+cos-&(~~y+x)] 

E=f%e(k2) [eosky+ cos+((I/h-y)+cos -$(l/~y+x)] 

(2.7) 

2. .). 
In the cases (2.61, (2.8) fgk = mR,-I, and in the cases (2.7), (2.9) 

In both cases k2 belongs to the interval (2.2) with n = 0. 
k =mRo-‘(m=l, 

It is important to note that (1.2) can be written in the gradient form 
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This shows that the function H, like the energy in dissipative mechanical systems, does 
not increase with time, i.e. 

dH 
dt = s $+dzdy=- j(+)‘drdy 

Therefore, of the solutions (2.4)-(2.9) the most stable solution will be the one which 
realizes the absolute minimum of the mean value of H per unit surface: h = H/f dzdy. Cor- 
res~~ingc~putations showthatthe minimum value of /I = --'/esa (k2) is reached on the quasi 
one-dimensional structure. 

We must confirm that the solutions (2.4) are also stable in the presence of small 
perturbations. Linearizing (1.2) with respect to small perturbations u on the background of 
the stationary solution (2.4), we obtain 

u1 + u + 2aAu + A% + 2 (1 + cos (2kx)) u = Cl, k = (k, 0) (2.11) 

The characteristic mode which may lead to instability, has the following general form: 

u = exp 162 (p) t] (a, cos p+x f b, sin p,x + (2.12) 
b_sinp_x+a_coep_x), p*=ptk IPI-sZ~ 

The dispersion relation connecting a with p is found by substituting (2.12) into (2.11) 
and equating to zero the coefficients of the independent harmonics. The resulting fourth- 
order determinant is written in the form of a second-order determinant squared, and the 
equation becomes 

[B - s2 (p+") i- 2eS @*)I 10 - et (p_') $- 2E3 @*)I - CC!* (ka) = 0 12.13) 

Equation (2.13) defines two branches of the increment B(p).The firstbranchis automatically 
negative fox small pa, since we have for it Q (0) = -2es (k2), and the second branchvanishes 
as p2+0 

P (p) = I/, (-e* (P) + 2 (k* - 1)*) (f~p)~ - p” (2.14) 

(The first branch represents the root of the dispersion equation which is in fact extraneous, 
whose appearance is connected with the formal increase in order during the passage from the 
basic equation (2.11) to the truncated one /9/). 

From (2.14) it foll.ows that the quasi one-dimensional structure (2.4) is locally stable 
when the following condition, obtained in /a/ for the purely one-dimensional case, holds: 

2/,h2 < e2 (Ii+) < h2 

i.e. in the region where the square of the amplitude of the fundamental (first) harmonic of 
the solution is equal to at least two thirds of its maximum value reached when k” -=. 1. 
Since the absolute minimum of h is reached in the solution (2.4) when kZ = 1, it is in this 
structure, that the cylindrical front of evaporation appearing as a result of almost any initial 
conditions, must in the end undergo evolution. The results obtained concerning the stability 
of the solutions of (1.2) with cylindrical boundary conditions can be transferred, almost 
verbatim, to the case of an unbounded plane; the form of the solutions f2.4)-(2.9) remains 
practically unchanged. 

We have a comp1etel.y different situation in the case of an equation with quadratic non- 
linearity (1.1). In the unbounded plane the equation has, cn the whole, no stable stationary 
solutions (at least of sufficiently simple form). On the cylindrical surface however, as will 
be shown beLow, stable solutions do exist. One of them is the quasi one-dimensional solution* 

5 (s) : 3e (k*) sin kz - !‘/,E’ (k”) - ‘/,E’ (k2) cos 2kx (Lz.15) 

(*Details of the study of such solutions on a cylindxical surface are given in the paper by: 

Malomed B.A. and Staroselskii I.E. Stability of quasiharmonic structuresingas flames.Preprint, 

Chernogolovka, 1983.) 
The solution is stable, p rovided that the cylinder radius R < 1 - h/2, since the charac- 

teristic modes of small perturbations, disturbing the structure f2.15), are forbidden by 
the condition of periodicity. When R > f - k/2 , the solution (2.15) becomes unstable with 

respect to e.g. the perturbation u - esp (Qtf sin (yR-'). 

When R finds itself, as a result of a further increase, with the narrow interval 

1 - h/2. -< N -< 1 Jr hi2 (‘1.16) 

we first arrive at the value of Ic,, permitted by the condition (2.1), for which the vector 
(k,, k,) falls in the region (2.2) n = 1. The solution which appears in this case in the form 
of rectangular cells 



E = 3~ (kz2) sin k,x - e/,ez (kX2) - l/& (kSa) x 

cos 2k,x + 3~ (k,2) sin k,y - 8/2e2 (kva)- l/ze2 (kyz) ~0s 2k,y 
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(2.17) 

is locally unstable in the plane, but the characteristic modes of small perturbations which 

would destroy the structure (2.17) are forbidden in region (2.16) by the condition of period- 

icity. WhenRis increased further, the rectangular lattice will disappear since the solution 
no longer satisfies the boundary condition and a stochastic regime will obviously occur in 
this region. Equation (1.1) also admits of hexagonal SOlUtiOnS. These however are unstable 
even under the action of purely amplitude-type perturbations, i.e. perturbations which do not 

violate the symmetry of the solution. It follows that no boundary conditions can stabilize 

them. 
Thus Eq.(l.Z) has a family of stable cellular solutions on a cylindrical surface of any 

radius, and the most stable solution is the qusi one-dimensional one 

E(x)= T/T&cosx + O(h') 

Whenthecylindrical combustion front of a gaseous mixture described by (1.1) expands, a 
change must be observed at its face, from the quasi one-dimensional structure, to a rectangular 
parquet-like pattern, followed by the onset of an essentially non-stationary combustion mode. 
It should be noted that cellular structures were observed in gas flames experimentally /lo/ 
and they definitely became stochastic for large values of R,. 

3, If the equations (1.1),(1.2) are specifed on a spherical surface of radius R, then 
the trivial solution 5 G 0 in the weakly supercritical region kg< 1 loses its stability 
with respect to small perturbations 

E - @*Y,, (0, cp) = P*P,, (cos 6) eimv 

provided that the following condition holds: 

9 (I, R) = he - (Z(1 + i)/Ra - ll* > 0 (3.1) 

Here 8 and cp are spherical coordinates, Y1, (e,cp) is a spherical harmonic and P,,(cos@) 
is the associated Legendre polynomial. If 

R<R,, R, = (2X)-l (3.2) 

then narrow (of width h*) ranges of the values of the radius R exist for which an integer 
(and unique) value of l from (3.1) exists, and the distance separating these ranges is -1. 

When R becomes comparable with R,, regions of stability of the unperturbed spherical 
front vanish. Henceforth, when i?> R, expression (3.1) determines, like (2.2), the broad 
spectrum of characteristic modes which become excited for fixed R. 

Here we shall only consider the case (3.21, since the opposite situation resembles the 
case discussed above. Then the dissipative structure will be described, provided that 
condition (3.1) holds, by the formula 

5 (6, cp) = almPlm (~0.9 e) cos mcp + 0 (al,) (3.3) 

where the amplitude of the structure a,, is of order e(1, R) or ez (I, R) (see above) . The 
value of 1 is found from (3.1), 0 <m < 1. When m =0, these structures describe rings on 
the sphere, and are analogous to the quasi one-dimensional structures (2.4),(2.15), while 
when m> 1 they describe a lattice of spherical trapezia resembling the structures (2.5), 
(2.17). We shall calculate here the quantities al,,, for the equations (1.1),(1.2) for various 
special cases, and show the instability of all corresponding solutions. 

To describe the solution of (l.l), it is sufficient to take into account the first term 
of the series whose beginning is given in (3.31, provided only that 1 is even and m=O. 
Then, substituting (3.3) into (1.1) we obtain 

n 

a,,, = e* (I, R)G Y 
[F ( il 

“l,deeos ‘) )’ PI, (cos @sin 8 de]-’ (3.4) 

(When I is odd, integration over dI3 would make the right-hand side of (3.4) infinite) _ Since 
the amplitude obtained is of the second order of smallness, we can conclude at once that the 
structure is unstable. 

Indeed, if we choose on the background of (3.3) a perturbation in the form 
with any "#I=+ 0. 

U - eQfYlm, 
then the stabilizing contribution towards the increment R due to the term 

F'5)' will in every case be proportional to a‘ (1, R), while the destabilizing contribution 
arising from the linear part of the equation will be equal to $(I, R). 

In the case of odd I or m+o, the amplitude of the stationary structure (3.3) is 
formed by all spherical harmonics 

YLM for which 
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The simplest 
form(there is no 

Substituting 

solution of this type corresponding to I=i,m=O, should be sought in the 
solution corresponding to l=i, m=i) 

& = a,,cosO + 3Acos O sin 8 ~0s cp (3.5) 

(3.5) into (1.1) and equating to zero the coefficients accompanying the -. _ . 
independentharmonrcs, we can find their amplitudes 

ne=f&(i,Rf, A=(~/I,),~(I,R) (3.6) 

'Thus the amplitude of the fundamental (first) harmonic of the solution is proportional to 
e(1.S). Theassertionalsoholds foranyodd ~>i. Consideringasmallperturbationproportional to 
P'sinOcoscp onthebackgroundof the solution (3.51, (3.6),we cansee thatitsinstabilityincrement 
ispositive ? = ea. The stationary solutionswillall~dd 1> i obviouslypossessthis instability. 

It should be noted that since the curvature is a stabilizing factor and the number I 
givenby (3.1) increases as the curvature decreases, the instability of the structures (3,4f, 
(3.5) and (3.6) corresponding to the smallest i= 1, 2 indicates at once the instability of all 
solutions of (1.1) on the sphere, The conclusion that no stationary stable structures are 
Present in gas flames described by (1.1), agrees with the results of the numerical, investi- 
gation carried out in /ll/. 

The fundamental harmonic of (3.3) is always sufficient to determine the stationary 
solution of (f-2), since the functions P I=(Z) and IPz,(z)ls have the same parity for all t 
and m, For example, the amplitude corresponding to 1 = 1 and m =O is found from the 
relation 

-02 (1, R) <cos" e> + alO2 <cos46> = 0 

(<f(6)>=ii(6)sin6d6) 
0 

and from these we have 

aio=~Gk(l, 8) (3.7) 

The unique characteristic small-perturbation mode which may lead to instabiLity of this 
solution, has the following form in the zero order in e : 

u = e* sin 6 co9 cp (3.6) 

We can show, however, that the use of (3.8) leads only to a reduction in the destabilizing 
contribution @f&R) to the increment in 9, which should therefore be sought with an 
accuracy to terms of order 8‘ (l. R). To do this, we must find a correction to thecharacteristic 
mode (3.8) proportional to 0% 

u1 = --l/r& (1, R) P,, (CDS 0) co9 cp (3.9) 

Substitution of (3.6)-(3.9) into (1.2) shows that the solution found from the equations 
(3.3), (3.6) is unstable, and Q= (6/3&)s'(i, R). The amplitude of the solution proportional 
to Yu and the increment of its instability are both identical with those just found. We 
also give the value %. = (~~~)e for the solution proportional to Y,,. This solution is 

also unstable, with an increment proportional to e* (2, Rf. We must however remember that 
introducing small terms into (1.21, such as Es, will alter the increment by an amount of 
order e", and this can, in principle, change its sign_ Therefore the solution (3.7) and 
another similar solution (see below) should be regarded, within the accuracy with which (1.2) 
describes the physical problem, as neutrally stable. 

We can also obtain compact expressions for the amplitudes of cellular structures, and 
study their stability in the case when the radius of the sphere is R$+ i (still remaining 

within the region (3.2)). Then the number 2 determined by (3.1) is also large, and the 
asymptotic expressions for the Legendre polynomials can then be used. /12/. Allamplitudes are 

conveniently determined not by using rel.ations (3,3), but from 

E=.&,sin[(Z +-&)6+2_]sin+000smg, m even (3.10) 

?+Ai,&os[fZ C~)8+;]si~-'hecosm~, m odd ' 

Substituting (3,101 into (l-2) we obtain 



A IO = 2 fl+ I,-‘k (I, R) 
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(3.11) 

for the quasi one-dimensional structure, and 

A Irn = ; y-a,-% (I, R) 3.12) 

for all parquet-like structures outside the dependence on m, where fl is a quantity equal to 

21~ E with logarithmic accuracy. (Since I> 1, we replace in (3.11), (3.12) the quantity 
1 + '12 by I). We note that when the-radius R increases, the curvature of the surface 
connected with formation of the dissipative structure is small 

Al,/R-[RI/~R)-‘~O as R+CO 

To show that all parguet-like structures are unstable, it is sufficient to take, on 
their background, a small perturbation independent of 'p 

which yields Q = ai$!z (1, R). It can also be shown that the quasi one-dimensional structure 
is stable to perturbations proportional to Y,,, with even m. When the perturbation is 
proportional to Yl,(fl,cp), the stabilizing contribution towards the increment is found to be 
equal to si,A1,2 (I&), and this shortens, as far as the accuracy is concerned, the destabilizing 
term eZ(Z, R) irrespective of the method used to compute the quantity 1,. Therefore, to 
explain the stability of the ring structures we must, as was shown ebove, consider the 
correction to the characteristic mode proportional to e'. As a result we fi.nd, that all ring 
structures with an increment of the order of e'(1.R) are unstable. 

Note that we could seek the solutions of (l-l), (1.2) onthesphericalsurfaceproportional, 
to a first approximation , to the combination of harmonics Y,, with different m and equal I, 
incident on the region (3.1). We find however, that, at least when I = i,2,3there are no 
such solutions, neither in the case of (l.lf, nor of (1.2). Equations containing both quadratic 
and cubic non-linearities, may have such solutions. 

4, Let us consider some one-dimensional solutions of (l.l), (1.2) in a plane, the 
solutions themselves possessing non-trivial topological properties /13/ 

E (2) = d (z)sin kx + o (o), 1 vu 1 eg i (4.1) 

Substituting (4.1), into e.g. (1.2) we find, that such a solution exists only when ks=a 

and the amplitude a(z) has the form 

Its "topological charge" /13/ manifests itself in the fact that the amplitude changes its 
sign on changing from += -00 to t= $00. In other words, the phase changes, at the point 
X=0 where the amplitude becomes zero, by x in a discontinuous manner. The solution (4.1), 
(4.2) is stable and the analogous solution of (1.1) is unstable on an unbounded plane. 

The authors thank S.I. Anisimov fox valuable comments. 
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THE THERMAL PROBLEY FOR A SUIMERGED STREAM* 

M-A. GCL'DSHIIK and N-1, YAVORSKII 

The general solution of the thermal problem of convective heat conduction 
with volume heat dissipation caused by viscous dissipation of kinetic 
energy of the fluid, whase velocity field is determined by the exact 
solution /l/ of the Navier-Stokes equations, is considered for a sub- 
merged stream. The possible formulation oftheheat problem and the 
characteristic behaviour of the solutions are investigated. The solutions 
obtained have a special feature, namely the existence, under specified 
conditions , of two regimes of convective heat exchange, 

A particular solution of the problem in question corresponding to a point heat source 
superimposed on the steaai source was obtained in /2/, without taking into account the 
dissipative heat emission. The solution corresponds to the first term of the expansion of 
the temperature in a series in multipoles 

where R,0 are spherical ceordinates and the angle 6 is measured from the stream axis. The 
appearance in (1) of the fractional indices a,, is connected with the presence, in the 
equation of heat conduction 

of the convective term which changes the spectrum of the operator L. 
The velocity field for a submerged stream has the form /l/ 

LT+ L=(u, v)-UA 
P 

(2) 

(31 

The coefficients of kinematic viscosity v and thermal conductivity a are assumed to be 
constant, A>1 is a constant connected monotonically with the momentum of the stream 

I+ q&j-~ n- 
Ai A”f-1 

A-l I 
and according to @)I+0 as A-m and I-tm as A -+ 1. 

The expansion (1) holds only for the solution of the homogeneous equation (2). The 

solution of the inhomogeneous equation of heat conduction (2) contains, apart from (l), a term 
whose form is determined by the dissipative heat source. Without the convective terms in the 

homogeneous equation the expansion (1) aseumes the classical form, with a, = R and r_, 

being spherical functions. In the general case a,,#n, n> 1. According to (31, the 

dissipative function in (2) is proportional to Rq4, and this generates in (1) I with one 
exception which will be noted below, an additional term of the form z (2) R-" corresponding 

to the particular solution of the inhomogeneous equation. 
Substituting (1) and (3) into (21, we obtain for a,, # 2 

(1 -z2)._&_ - 2x&,' + pr(!%'+ W/T,) + a,(%-- l!%=o (5) 
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